RISK AND RISK REDUCTION IN TBM TUNNELLING IN ROCK
ARMS, Kyoto 2004. Keynote.

NOT TBM — BUT EXCELLENT RISK REDUCTION !



INTRODUCTION

- After a tunnel collapse or TBM cutter-head blockage in a
tunnel, it is usually clear to the experienced tunnelling
engineer what the cause(s) of the collapse or blockage
were.

- Before the event it would often be necessary to be
exceptionally pessimistic to have foreseen the
‘unthinkable’.

« The ‘unthinkable’is often the combination of several
adverse factors, which separately are ‘expected’ though
serious events, but when combined are, quite logically,
‘Unexpected events’.




SOME OF THE (OBVIOUS) HIGH-RISK FACTORS

« significant fault zones

 adversely oriented planar clay-coated joints

« very abrasive rock

« very low stress, very high stress
e exceptional stress anisotropy

* high volumes of stored water

* high permeability



A short list of TBM tunnels that suffered (catastrophically) from
multiple unexpected events

1. Unpredicted fault swarm parallel to valley-side, together
with very high (and fault-eroding) water pressures, at
depths of 700-900m. TBM tunnel (diameter 5m) eventually
ran sub-parallel to individual faults, causing delays of at
least half a year for each 1m wide fault (AR = 0.005m/hr).
TBM finally abandoned; new contractor for D+B from other
end of tunnel.

(Pont Ventoux HEP, N. Italy).



KEY FEATURES WERE MISSED IN THE SITE INVESTIGATION -
BUT THE TUNNEL IS DEEP




FAULT ZONE STOPPAGES---AND MASSIVE WATER INFLOWS




STRESS-SLABBING
HIGH WATER PRESSURES

(IN ADDITION TO FAULT ZONEYS)




A SIX MONTH DELAY AT JUST ONE FAULT
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2. Alternating massive quartzite (minimum PR =
0.2mv/hr), talcy sheared phyllites (‘over-excavating’ and
stand-up time limitations), and fractured quartzite
‘aquifer’. Early blow-out of 4000 m?3 rounded gravels at
750m depth and maximum 70 m3/minute water in-rush.
Eventual abandonment of the 8m diameter TBM in a
fault zone; D+B from other end of tunnel after years of

delay.

(Dul Hasti HEP Kashmir).



THE ALTERNATING QUARTZITE AND PHYLLITE
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Fig. 41 Blow-out location for 4000 m® of sands and gravels and peak water inflows of
70 m’/min at Dul Hasti HEP, Kashmir. Deva et al., 1994.
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Figure 18 Deva et al. (1994) recordings of pressure decay in 8.4 m TBM tunnel driven in

fractured quartzite and phyllite




NOW A NEW CONTRACTOR
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3. ‘Unexpected’ combination of fault zones, abrasive quartzites
and meta-sandstones, clay-coated joint sets and exceptional
water pressures and inflows. At least twelve D+B by-passes
of TBM pilot tunnel during 10 years of delays. Squeezing
deformation of pilot tunnel from 26m distant main (11.7m)
TBM. Fault zone collapse destroyed one 11.7m TBM, other
used to mine invert, needing D+B cutter-head releases and
D+B mining and support of top-heading. Great difficulties to
drill pre-injection holes. Eventual completion (after 12 years)
by mainly D+B from other end of tunnel.

(Pinglin Tunnels, Taiwan).
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The 12th by-pass of the pilot TBM to release the cutter-head, after 10
years of tunnelling problems (2002).




BY-PASS SITUATION FOR THE DOUBLE-SHIELD (11.7m) TBM
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ONE 11.7m TBM IS REMAINING, ONE IS DESTROYED (2002)




4. Unexpectedly high water inflows and unexplored
regional fault zone due to limited access for marine
seismic at container port. Sub-sea TBM of 3.3m
diameter took three times longer than contracted, even
after abandonment by first contractor.

(Tunnel F, SSDS, Hong Kong).



STRATEGIC SEWAGE DISPOSAL SCHEME
FOR HONG KONG
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NOTE DIFFICULT PRE-GROUTING ‘GEOMETRY’
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ITEM METRIC COMMENTS

Lutters;
Culler Diometer 432mm
Max. Culter Loading 250KN
No. of Discs 26
Sulterhead;
Thrust (Max. racommended) | 648 tonnes At 4,330 psi (300 bor)
Thrust (Mox ovailable) 698 tonnes AL 4,500 psi (300 bar)
Power 74640 4 water cooled motors
Rotation Speed 13.2 rpm
Torque 55,010 kg-m
Hyd. Stort & Jog Motors [ 1

=1
Boring Stroke: 152 meters
Mochine Configuration: Two Horizontal Grippers
Force of Horizonlol Grippers | 1,414 Tonne AL 4,500 psi (262 bor)
Grip to Thrust Rotio 281

System Electric Power: 30KW

TOTAL LENGTH OF TBM + BACKUP = 117.1m

Fig. 36. The unfavourable position of the Tamrock drills, and measures used to collar closer to
the face. (Skanska photos)
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SKETCH OF REGIONAL FAULT ZONE and ’pilot’ borehole drilled
backwards from forward shaft
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THE 730m OF CORE WAS Q-HISTOGRAM LOGGED TO PRODUCE
STATISTICS OF FIVE ROCK CLASSES
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EXAMPLES OF FIVE ROCK CLASSES and their Q-parameter statistics



CASE RECORD DATA FROM 140 TBM (Barton, 2000).

Penetration rate
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THE GENERAL TRENDS OF
DECELERATION WITH LENGTH
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USE OF Qg METHOD TO ESTIMATE PROGRESS WITHOUT INJECTION
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USE OF Q.5,, METHOD TO ESTIMATE
PROGRESS WITH INJECTION
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Nick Barton and Associates

Rock Engineering

Fig. 7. Samples of the edve of the Tolo Channel Fault Zone. at end of LHOIL.

.~ Nick Barton and Associates

Rock Engineering
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IN OTHER WORDS-----AVOIDANCE OF THESE TYPES OF DELAYS
(which reduce AR, and increase the negative gradient (-)m of
deceleration)
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Robbins, (182

0
7

Position 2

SN

EARLIER IN THE TUNNEL, THIS TBM WAS BREAKING RECORDS IN SHALE




IS THE PILOT HOLE'!

BUT SOMETIMES THE TBM

SHIMIZU 3, TOMEI 2, JAPAN



1880 (!) PILOT TBM in chalk marl (o, = 4 to 9 MPa)




THE CHALK MARL WAS NOT EXPECTED TO BE JOINTED !

R N

_"m%“":’ L lb ™ LRI R

S e e 1‘
/|

EOETNE  CHALK MARL

THE TBM HAD GREAT DIFFICULTIES IN THE EARLY KILOMETERS, DUE TO
SUCH JOINTS ( weathering and water pressure and salt water and block-falls
..... all added risk




DON’T AUTOMATICALLY ASSUME THAT LONG TUNNELS NEED TBM -
this will also reduce risk !
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ONE MUST BE CLEAR ABOUT THE ROCK QUALITY STATISTICS....

200F Average rates of advance for TBM T
decline more strongly with increased
tunnel length or time of measurement
than they do in D+B tunneling.
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BEFORE CHOOSING THE TBM ALTERNATIVE.....FOR THE WHOLE TUNNEL



BAD FOR TBM TUNNELLING ! BAD FOR D+B and TBM TUNNELLING !

Q =100/0.5 x 4/0.75 x 1/1 Q =10/20 x 1/8 x 0.5/ 20
Q = 1000 (or better) Q =0.001 (or worse)



SEISMIC MEASUREMENTS FOR REDUCING RISK....

EFFECT OF TIME, INSUFFICIENT SUPPORT, DEPTH on Vp
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OVERBURDEN STRESS (MN/m?)
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Gjovik Olympic cavern.....see pre-investigations

(Photo from Veidekke A/S, one of the contractors)




Cores were logged from either side of the seismic cross-hole tomography
profiles (NGI, Barton et al. 1991)
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the velocity next to the boreholes was increasing.....up to 2 km/s



An empirical model for interpreting depth effects

Seismic velocity (km/sec.
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P-Wave Velocity (km/sec.)
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Velocities are ‘all’ predicted to be high at depth, but different rock
gualities are differentiated to a degree that should still be useful




PRE-GROUTING...... FOR REDUCING RISK

Excavation Cycle Completed Prior to Grouting Cycle

Outer reduced-permeability
zone grouted using “Blocks

Permanent strengthened, low Extended, strengthened, low
permeability zone using stable permeability zone
ultrafine/microfine cementitious grout.

(One of ELKEM’s Multigrout concepts)




REDUCING RISK BY PRE-INJECTION
MEASURES....INCREASE Q ???

Rock classes

Rock classes
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SO IF WE COULD DETECT Q BEFORE SO IF WE COULD IMPROVE Q
TUNNELLING....... DURING TUNNELLING
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effective RQD increases e.g. 30to 50%

effective J, reduces e.g. 9to 6
I increases e.g. 1to2 (changed set)™
Ja reduces e.g. 2tol (changed set)*
| increases e.g. 0.5t00.66 (perhapsJw=11is
achieved)
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Before pre-grouting After pre-grouting (alternative)

Q =03 Q =11 (Q=4-4)
Vp=3.0 km/sec Vp=4.5 km/sec (Vp=4-1) km/sec
L 3(3x10"m/s L=0-1 (10°m/s) (L=02)2x 10® m/s

=7 GPa M =22 GPa (M = 16) GPa
Pr ~14 tnf/m’ Pr=4-5tf/m®  (P,=61) tnf/m’
A =33 mm A =09 mm (A=2-3) mm
Without pre-grouting With pre-grouting (alternative)
B 1-5 m/sec B24mclc B2-1mc/c

S (fr) 12 cm S (fr) 4 cm S (fr) Scm




SOME OF THE -
EMPIRICAL Qfm/s) Vp = (o &, 33 [ ey fL)
EQUATIONS ffect 7
RELATING (GPa) Epags = 1D Qs (*“P")
Q-value and SleMA, | = 52( Q/3 (MPy)

rock mass P

property estimates

D-( Q € N}/ (MPa)
& mas; e
=Q, |
Kz=lo ?x L (M/;)
AT - = 5!’AA/{"\)/Q .
Fc = Gan (j'%f s w)
CC = RRY/7, xVsrr x Ve y,

pm—



CONCLUSIONS

> High risk factors are often combined in an ‘unexpected’
combination when TBM get stuck

» Risk can be reduced by appropriate use of standard
techniques (geological logging and rock mass
characterization, core logging, hydraulic testing, seismic
profiles between holes)

» When tunnel depth is great each of the above require
‘extrapolation’ and risk increases, making probe drilling (even)
more important

» The assumption that TBM go faster than drilling-and-blasting
In long tunnels introduce several increased risks:

a) adverse rock quality statistics (extreme-value problem)

b) need ‘central’ rock qualities to improve TBM deceleration (-)m



c) less favourable ‘problem solving’ conditions for the contractor in
TBM tunnel

Seismic velocity probing needs careful correction for
stress/compaction effects as V, may increase without rock
guality improvements

A way to improve effective rock quality and control water, and
therefore to reduce risk, is to (try to) perform pre-injection
ahead of the face



